首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4870篇
  免费   753篇
  国内免费   406篇
化学   5206篇
晶体学   28篇
力学   17篇
综合类   92篇
数学   40篇
物理学   646篇
  2024年   2篇
  2023年   76篇
  2022年   132篇
  2021年   289篇
  2020年   324篇
  2019年   192篇
  2018年   179篇
  2017年   172篇
  2016年   290篇
  2015年   287篇
  2014年   304篇
  2013年   381篇
  2012年   381篇
  2011年   295篇
  2010年   298篇
  2009年   358篇
  2008年   293篇
  2007年   266篇
  2006年   263篇
  2005年   245篇
  2004年   223篇
  2003年   156篇
  2002年   97篇
  2001年   78篇
  2000年   69篇
  1999年   85篇
  1998年   59篇
  1997年   54篇
  1996年   31篇
  1995年   29篇
  1994年   27篇
  1993年   20篇
  1992年   18篇
  1991年   14篇
  1990年   5篇
  1989年   5篇
  1988年   7篇
  1987年   2篇
  1986年   10篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1978年   1篇
排序方式: 共有6029条查询结果,搜索用时 80 毫秒
21.
Endocytic pathways are practical routes for the intracellular delivery of biomacromolecules. Along with this, effective strategies for endosomal cargo release into the cytosol are desired to achieve successful delivery. Focusing on compositional differences between the cell and endosomal membranes and the pH decrease within endosomes, we designed the lipid-sensitive and pH-responsive endosome-lytic peptide HAad. This peptide contains aminoadipic acid (Aad) residues, which serve as a safety catch for preferential permeabilization of endosomal membranes over cell membranes, and His-to-Ala substitutions enhance the endosomolytic activity. The ability of HAad to destabilize endosomal membranes was supported by model studies using large unilamellar vesicles (LUVs) and by increased intracellular delivery of biomacromolecules (including antibodies) into live cells. Cerebral ventricle injection of Cre recombinase with HAad led to Cre/loxP recombination in a mouse model, thus demonstrating potential applicability of HAad in vivo.  相似文献   
22.
Four new zinc (II) complexes [Zn (HL1H)Br2] (1), [Zn (HL1H)Cl2] (2), [Zn2(HL2)Br3] (3), and [Zn (HL2)Cl] (4) have been synthesized by adopting template synthetic strategy and utilizing two homologous Schiff base ligands (H2L1 = 4-bromo-2-{[2-(2-hydroxyethylamino)-ethylimino]-methyl}-6-methoxyphenol, H2L2 = 4-bromo-2-{[3-(2-hydroxyethylamino)propylimino]methyl}-6-methoxyphenol), differing in one -CH2- unit in the ligating backbone, by adopting template synthetic strategy. All the complexes have been characterized by single crystal X-ray diffraction analysis as well as by other routine physicochemical techniques. Ligand mediated structural variations have been observed and rationalized by density functional theoretical (DFT) calculations. Interaction of the complexes 1–4 with Bovine Serum Albumin protein (BSA) has been studied by different spectroscopic techniques. A complete thermodynamic profile (ΔHo, ΔSo and ΔGo) was evaluated initially from the change in absorption and fluorescence spectra upon addition of BSA to the complexes. Appreciable binding constant values in the range ~ 0.94–4.51 × 104 M−1 indicate efficient binding tendency of the complexes to BSA with the sequence 1 ≅ 2 > 3 ≅ 4. Circular dichroism (CD), isothermal calorimetric titration experiments, molecular docking and molecular dynamics have been performed to gain deep insight into the binding regions of complex 1 to BSA. Experimental evidences suggest an interaction of zinc complexes at the surface of BSA protein and this particular binding has been exploited to determine unknown concentration of BSA protein. For this purpose complex 1 was explored as a BSA protein quantification tool.  相似文献   
23.
Secondary structures tend to be recognizable because they have repeating structural motifs, but mimicry of these does not have to follow such well-defined patterns. Bioinformatics studies to match side-chain orientations of a novel hydantoin triazole chemotype ( 1 ) to protein-protein interfaces revealed it tends to align well across parallel and antiparallel sheets, like rungs on a ladder. One set of these overlays was observed for the protein-protein interaction uPA⋅uPAR. Consequently, chemotype 1 was made with appropriate side-chains to mimic uPA at this interface. Biophysical assays indicate these compounds did in fact bind uPAR, and elicit cellular responses that affected invasion, migration, and wound healing.  相似文献   
24.
25.
Bioanalysis assays that reliably quantify biotherapeutics and biomarkers in biological samples play pivotal roles in drug discovery and development. Liquid chromatography coupled with mass spectrometry (LC–MS), owing to its superior specificity, faster method development and multiplex capability, has evolved as one of the most important platforms for bioanalysis of biotherapeutics, particularly new scaffolds such as half-life extension platforms for proteins and peptides, as well as antibody drug conjugates. Intact LC–MS analysis is orthogonal to bottom-up surrogate peptide approach by providing whole molecule quantitation and high-level sequence and structure information. Here we review the latest development in LC–MS bioanalysis of intact proteins and peptides by summarizing recent publications and discussing the important topics such as the comparison between top-down intact analysis and bottom-up surrogate peptide approach, as well as simultaneous quantitation and catabolite identification. Key bioanalytical issues around intact protein bioanalysis such as sensitivity, data processing strategies, specificity, sample preparation and LC condition are elaborated. For peptides, topics including quantitation of intact peptide vs. digested surrogate peptide, metabolites, sensitivity, LC condition, assay performance, internal standard and sample preparation are discussed.  相似文献   
26.
27.
Pea protein isolate (PPI) and bean protein concentrate (BPC) were evaluated as fiber-forming vegetal source materials through electrospinning using various solvents. The effects of hexafluoroisopropanol (HFIP), trifluoroethanol (TFE), trifluoroacetic acid (TFA), formic acid (FA) and water on rheological and conformational properties of the protein solutions were determined. The morphology and molecular organization of the electrospun structures were studied. All PPI and BPC solutions displayed pseudoplastic behavior. Circular dichroism spectroscopy revealed that β-type turns and β-sheets were the dominant protein conformations in water, HFIP, and TFE. After electrospinning, most of the solutions afforded beads. Fiber-like morphologies were only obtained when BPC was dissolved in HFIP. BPC demonstrated better performance in the electrospinning process than PPI. Denaturation of the protein isolates was not sufficient to form fibers, the viscosity of the solution as well as the vapor pressure of the solvents played an important role in defining the morphology.  相似文献   
28.
Despite great progress, it is still of high interest to explore new homogeneous assays for simple, visual, and selective protein detection. Herein, one new colorimetric sensor has been developed for visual detection of protein by using polymeric micelles as a sensing scaffold and the molecular recognition between protein and the ligand on the surface of the polymeric micelles as the driving force to trigger the readout of the detection signal. The polymeric micelles formed via the self‐assembly of the amphiphilic block polymer biotin‐labeled poly(ethylene glycol)‐block‐poly(3‐acryl aminophenylboronic acid) are endowed with colorful feature by incorporation of alizarin red S (ARS) into the hydrophobic core. Based on the response to streptavidin recognition, these micelles are further disintegrated through the competitive binding of α‐cyclodextrin with boronic acid for disassociation of ARS, which achieves orange–yellow to pink–purple transition in 2 h. This work will open the way to develop one new mix‐and‐measure, visual, and homogeneous assay.  相似文献   
29.
30.
We present a new approach for the identification of inhibitors of phosphorylation-dependent protein–protein interaction domains, in which phenolic fragments are adapted by in silico O-phosphorylation before docking-based screening. From a database of 10 369 180 compounds, we identified 85 021 natural product-derived phenolic fragments, which were virtually O-phosphorylated and screened for in silico binding to the STAT3 SH2 domain. Nine screening hits were then synthesized, eight of which showed a degree of in vitro inhibition of STAT3. After analysis of its selectivity profile, the most potent inhibitor was then developed to Stafia-1, the first small molecule shown to preferentially inhibit the STAT family member STAT5a over the close homologue STAT5b. A phosphonate prodrug based on Stafia-1 inhibited STAT5a with selectivity over STAT5b in human leukemia cells, providing the first demonstration of selective in vitro and intracellular inhibition of STAT5a by a small-molecule inhibitor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号